Motor Neurons with Axial Muscle Projections Specified by Wnt4/5 Signaling

نویسندگان

  • Dritan Agalliu
  • Shinji Takada
  • Ilir Agalliu
  • Andrew P. McMahon
  • Thomas M. Jessell
چکیده

Axial muscles are innervated by motor neurons of the median motor column (MMC). In contrast to the segmentally restricted motor columns that innervate limb, body wall, and neuronal targets, MMC neurons are generated along the entire length of the spinal cord. We show that the specification of MMC fate involves a dorsoventral signaling program mediated by three Wnt proteins (Wnt4, Wnt5a, and Wnt5b) expressed in and around the floor plate. These Wnts appear to establish a ventral(high) to dorsal(low) signaling gradient and promote MMC identity and connectivity by maintaining expression of the LIM homeodomain proteins Lhx3/4 in spinal motor neurons. Elevation of Wnt4/5 activity generates additional MMC neurons at the expense of other motor neuron columnar subtypes, whereas depletion of Wnt4/5 activity inhibits the production of MMC neurons. Thus, two dorsoventral signaling pathways, mediated by Shh and Wnt4/5, are required to establish an early binary divergence in motor neuron columnar identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt4 Participates in the Formation of Vertebrate Neuromuscular Junction

Neuromuscular junction (NMJ) formation requires the highly coordinated communication of several reciprocal signaling processes between motoneurons and their muscle targets. Identification of the early, spatially restricted cues in target recognition at the NMJ is still poorly documented, especially in mammals. Wnt signaling is one of the key pathways regulating synaptic connectivity. Here, we r...

متن کامل

The Drosophila Hox gene Ultrabithorax acts in both muscles and motoneurons to orchestrate formation of specific neuromuscular connections

Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ve...

متن کامل

Wnt4 Is a Local Repulsive Cue that Determines Synaptic Target Specificity

How synaptic specificity is molecularly coded in target cells is a long-standing question in neuroscience. Whereas essential roles of several target-derived attractive cues have been shown, less is known about the role of repulsion by nontarget cells. We conducted single-cell microarray analysis of two neighboring muscles (M12 and M13) in Drosophila, which are innervated by distinct motor neuro...

متن کامل

Wnt proteins contribute to neuromuscular junction formation through distinct signaling pathways.

Understanding the developmental steps that shape formation of the neuromuscular junction (NMJ) connecting motoneurons to skeletal muscle fibers is crucial. Wnt morphogens are key players in the formation of this specialized peripheral synapse, but their individual and collaborative functions and downstream pathways remain poorly understood at the NMJ. Here, we demonstrate through Wnt4 and Wnt11...

متن کامل

Fasciculation and Guidance of Spinal Motor Axons in the Absence of FGFR2 Signaling

During development, fibroblast growth factors (FGF) are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2009